Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Build Environ ; 227: 109804, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36407013

ABSTRACT

The COVID-19 pandemic has raised awareness in the spread of disease via airborne transmission. As a result, there has been increasing interest in technologies that claim to reduce concentrations of airborne pathogens in indoor environments. The efficacy of many of these emerging technologies is not fully understood, and the testing that has been done is often conducted at a small scale and not representative of applied settings. There is currently no standard test method for evaluating air treatment technologies, making it difficult to compare results across studies or technology types. Here, a consistent testing approach in an operational-scale test chamber with a mock recirculating heating, ventilation, and air conditioning (HVAC) system was used to evaluate the efficacy of bipolar ionization and photocatalytic devices against the non-enveloped bacteriophage MS2 in the air and on surfaces. Statistically significant differences between replicate sets of technology tests and control tests (without technologies active) are apparent after 1 h, ranging to a maximum of 0.88 log10 reduction for the bipolar ionization tests and 1.8 log10 reduction for the photocatalytic device tests. It should be noted that ozone concentrations were elevated above background concentrations in the test chamber during the photocatalytic device testing. No significant differences were observed between control and technology tests in terms of the amount of MS2 deposited or inactivated on surfaces during testing. A standardized, large-scale testing approach, with replicate testing and time-matched control conditions, is necessary for contextualizing laboratory efficacy results, translating them to real-world conditions, and for facilitating technology comparisons.

2.
Aerosol Sci Technol ; 57(12): 1178-1185, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38268721

ABSTRACT

The COVID-19 pandemic has raised interest in using chemical air treatments as part of a strategy to reduce the risk of disease transmission, but more information is needed to characterize their efficacy at scales translatable to applied settings and to develop standardized test methods for characterizing the performance of these products. Grignard Pure, a triethylene glycol (TEG) active ingredient air treatment, was evaluated using two different test protocols in a large bioaerosol test chamber and observed to inactivate bacteriophage MS2 in air (up to 99.9% at 90 min) and on surfaces (up to 99% at 90 min) at a concentration of approximately 1.2 - 1.5 mg/m3. Introducing bioaerosol into a TEG-charged chamber led to overall greater reductions compared to when TEG was introduced into a bioaerosol-charged chamber, although the differences in efficacy against airborne MS2 were only significant in the first 15 min. Time-matched control conditions (no TEG present) and replicate tests for each condition were essential for characterizing treatment efficacy. These findings suggest that chemical air treatments could be effective in reducing the air and surface concentrations of infectious pathogens in occupied spaces, although standard methods are needed for evaluating their efficacy and comparing results across studies. The potential health impacts of chronic exposure to chemicals should also be considered, but those were not evaluated here.

3.
PLoS One ; 16(9): e0257434, 2021.
Article in English | MEDLINE | ID: mdl-34591869

ABSTRACT

Although research has shown that the COVID-19 disease is most likely caused by airborne transmission of the SARS-CoV-2 virus, disinfection of potentially contaminated surfaces is also recommended to limit the spread of the disease. Use of electrostatic sprayers (ESS) and foggers to rapidly apply disinfectants over large areas or to complex surfaces has emerged with the COVID-19 pandemic. ESSs are designed to impart an electrostatic charge to the spray droplets with the goal of increasing deposition of the droplets onto surfaces, thereby promoting more efficient use of the disinfectant. The purpose of this research was to evaluate several spray parameters for different types of sprayers and foggers, as they relate to the application of disinfectants. Some of the parameters evaluated included the spray droplet size distribution, the electrostatic charge, the ability of the spray to wrap around objects, and the loss of disinfectant chemical active ingredient due to the spray process. The results show that most of the devices evaluated for droplet size distribution had an average volume median diameter ≥ 40 microns, and that four out of the six ESS tested for charge/mass produced sprays of at least 0.1 mC/kg. A minimal wrap-around effect of the spray deposition onto a cylindrical object was observed. The loss of disinfectant active ingredient to the air due to spraying was minimal for the two disinfectants tested, and concurrently, the active ingredient concentrations of the liquid disinfectants sprayed and collected 3 feet (1 meter) away from the spray nozzle do not decrease.


Subject(s)
COVID-19/prevention & control , Disinfectants/administration & dosage , Disinfection/instrumentation , Disinfectants/pharmacology , Disinfection/methods , Equipment Design , Humans , SARS-CoV-2/drug effects , Static Electricity , Surface Properties/drug effects
4.
Aerosol Sci Technol ; 52(1): 98-113, 2018.
Article in English | MEDLINE | ID: mdl-29681677

ABSTRACT

Several low-volume inlets (flow rates ≤16.7 liters per minute (Lpm)) are commercially available as components of low-cost, portable ambient particulate matter samplers. Because the inlets themselves do not contain internal fractionators, they are often assumed to representatively sample "total" mass concentrations from the ambient air, independent of aerodynamic particle size and wind speed. To date, none of these so-called "TSP" inlets have been rigorously tested under controlled conditions. To determine their actual size-selective performance under conditions of expected use, wind tunnel tests of six commonly used omnidirectional, low-volume inlets were conducted using solid, polydisperse aerosols at wind speeds of 2, 8, and 24 km/hr. With the exception of axially-oriented, isokinetic sharp-edge nozzles operating at 5 and 10 Lpm, all low-volume inlets showed some degree of non-ideal sampling performance as a function of aerodynamic particle size and wind speed. Depending upon wind speed and assumed ambient particle size distribution, total mass concentration measurements were estimated to be negatively biased by as much as 66%. As expected from particle inertial considerations, inlet efficiency tended to degrade with increasing wind speed and particle size, although some exceptions were noted. The implications of each inlet's non-ideal behavior are discussed with regards to expected total mass concentration measurement during ambient sampling and the ability to obtain representative sampling for size ranges of interest, such as PM2.5 and PM10. Overall test results will aid in low-volume inlet selection and with proper interpretation of results obtained with their ambient field use.

5.
Aerosol Sci Technol ; 52: 957-970, 2018 Aug.
Article in English | MEDLINE | ID: mdl-35169350

ABSTRACT

Accurate development and evaluation of inlets for representatively collecting ambient particulate matter typically involves use of monodisperse particles in aerosol wind tunnels. However, the resource requirements of using monodisperse aerosols for inlet evaluation creates the need for more rapid and less-expensive techniques to enable determination of size-selective performance in aerosol wind tunnels. The goal of recent wind tunnel research at the U.S. EPA was to develop and validate the use of polydisperse aerosols which provide more rapid, less resource-intensive test results which still meet data quality requirements necessary for developing and evaluating ambient aerosol inlets. This goal was successfully achieved through comprehensive efforts regarding polydisperse aerosol generation, dispersion, collection, extraction, and analysis over a wide range of aerodynamic particle sizes. Using proper experimental techniques, a sampler's complete size-selective efficiency curve can be estimated with polydisperse aerosols in a single test, as opposed to the use of monodisperse aerosols which require conducting multiple tests using several different particle sizes. While this polydisperse aerosol technique is not proposed as a regulatory substitute for use of monodisperse aerosols, the use of polydisperse aerosols is advantageous during an inlet's development where variables of sampling flow rate and inlet geometry are often iteratively evaluated before a final inlet design can be successfully achieved. Complete Standard Operating Procedures for the generation, collection, and analysis of polydisperse calibration aerosols are available from EPA as downloadable files. The described experimental methods will be of value to other researchers during development of ambient sampling inlets and size-selective evaluation of the inlets in aerosol wind tunnels.

6.
Aerosol Sci Technol ; 51(7): 868-878, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-32025079

ABSTRACT

Under the National Ambient Air Quality Standard (NAAQS) for airborne lead, measurements are conducted by means of a high-volume total suspended particulate matter (Hi-Vol TSP) sampler. In the decade between 1973 and 1983, there were 12 publications that explored the sampling characteristics and effectiveness of the Hi-Vol TSP, yet there persists uncertainty regarding its performance. This article presents an overview of the existing literature on the performance of the Hi-Vol TSP, and identifies the reported sampler effectiveness with respect to four factors: particle size (reported effectiveness of 7%-100%), wind speed (-36% to 100%), sampler orientation (7%-100%), and operational state (107%-140%). Effectiveness of the Hi-Vol TSP was evaluated with a solid, polydisperse aerosol in a controlled wind tunnel setting. Isokinetic samplers were deployed alongside the Hi-Vol TSP to investigate three wind speeds (2, 8, and 24 km h-1), three sampler orientations (0°, 45°, 90°), and two operational states (on, off) for aerosols with aerodynamic diameters from 5 to 35 µm. Results indicate that particle diameter was the largest determining factor of effectiveness followed by wind speed. Orientation of the sampler did not have a significant effect at 2 and 8 km h-1 but did at 24 km h-1. In a passive state, the Hi-Vol TSP was collected between 1% and 7% of available aerosol depending on particle size and wind speed. Results of this research do not invalidate results of previous studies but rather contribute to our overall understanding of the Hi-Vol TSP's size-selective performance. While results generally agreed with previous studies, the Hi-Vol TSP was found to exhibit less dependence on these four factors than previously reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...